Hydrological Summary for the United Kingdom

General

January was occasionally unsettled but was predominantly dry, exceptionally so in some areas. While there were mild spells, and the mean UK temperature for January was near-average, the month had a distinctly wintry character. The impact of the 'sudden stratospheric warming' that occurred in late December began to be felt, with northwesterly airflows bringing very cold weather and some disruptive snowfall. With frontal systems making little impression except in the north of Scotland, river flows generally declined steeply and January mean flows were depressed across the country, exceptionally so in some catchments. With recharge slowed or arrested across most aquifers, below normal and notably low groundwater levels were also widespread. At the national scale, reservoir stocks were moderately below average (4% below for England and Wales) but were appreciably below average in some northern impoundments (e.g. Kielder, Derwent Valley) and at Grafham and Ardingly in the English Lowlands. While the wetter December yielded some modest replenishment in the south, rainfall has been below average for much of the period from late spring 2018. The window for groundwater recharge and reservoir replenishment has narrowed further – late winter/early spring rainfall will be influential for the water resources outlook for summer 2019. February started with some very wet weather, and the latest outlooks marginally favour wetter-than-average conditions for the next three months, but with significant uncertainties.

Rainfall

January began dry and settled, a continuation of the anticyclonic conditions which prevailed in the last week of 2018. Frontal systems in the second week brought more mild and changeable conditions, especially to the west. Strong winds caused disruption on the 7th/8th in Scotland, alongside coastal flood alerts and some locally heavy rainfall (73mm was received at Achnagart, western Scotland, on the 12th). Generally rainfall totals were modest with little appreciable rainfall was received across large areas of south-east England through the first half of the month. Thereafter, February was generally colder, under persistent northwesterly flows, and often unsettled with sporadic, sometimes wintry, showers. There was a cold spell between the 17^{th} and 23^{rd} , with snowfall in upland areas (e.g. 16cm on the 23^{rd} at Malham Tarn, North Yorkshire). Further widespread snow brought some transport disruption in the final days. The January rainfall total was 53% of average for the UK as a whole, and much of the country received less than half the typical rainfall. It was the eighth driest January on record for England but parts of north-east Britain were exceptionally dry: for the Northumbria and Tweed regions it was the second driest January on record (27% and 21% of average respectively, all in records from 1910). The dry January extended medium-term rainfall deficiencies in north-east Britain where some areas received less than 70% of average for October-January (the driest such period since 1975/1976 for Northumbria) and longer-term deficiencies in central and eastern England: the June-January rainfall total was the fifth lowest on record (from 1910) for Anglian region and the lowest since 1996/1997 more widely (e.g. for Severn-Trent, Thames and Yorkshire).

River flows

Flows in the majority of catchments began 2019 in recession and, aside from some catchments in northwest Britain which saw modest responses to the unsettled spell in the second week, river flows continued to recede through the first half of the month. There were widespread incursions into low flow envelopes in responsive western catchments and some new January minimum daily flows (for the Earn, Lagan and Annacloy). The latter half of the month saw generally muted flow responses (although there were localised flood alerts in northern Scotland around the 26th). Flows were rarely above the seasonal average and recessions continued in some of the driest areas (north-east coastal catchments) and in slowly responding catchments in the English Lowlands. January mean flows were below average across the whole of the UK except

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL the far north of Scotland, and for a significant majority of catchments flows were notably or exceptionally low. A number of eastern catchments had flows less than 25% of average, with new record minimum mean flows in some catchments including the Earn, in a record from 1948, and the English Tyne, in a record from 1956. New minima were also established on the Soar (1972) and the Annacloy (1980). The January average outflows reflect the depressed runoff at the national scale; outflows for England & Wales and the English Lowlands series were the fourth lowest on record (after notable drought years, in a series from 1961). River flow accumulations since the start of autumn were generally below average or notably low and the November-January flows for the Helmsdale and Naver were the lowest in records commencing before 1978. Significant runoff deficiencies can be traced back to the early summer in many central and eastern catchments with flows less than half the average on the Bedford Ouse, Coquet, Tweed, Scottish Tyne and Deveron.

Groundwater

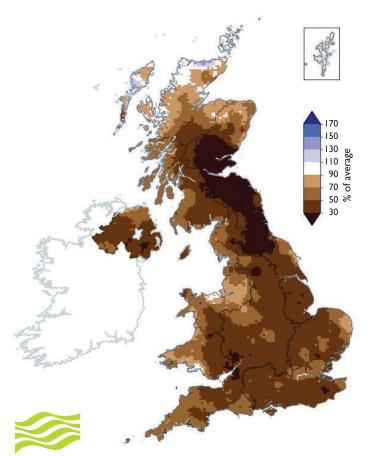
By the end of January, soil moisture deficits (SMDs) were negligible or eliminated across most of the country, but modest SMDs remained in parts of eastern England (although this is not atypical and the SMDs were near-average). For the majority of Chalk boreholes, groundwater levels fell during January, including several that had previously recorded some recharge. Levels at half the sites were below normal to notably low for January, although levels were in the normal range across the South Downs and locally elsewhere in the south and east. In the fast responding Chalk of Northern Ireland, levels at Killyglen fell in the first half of the month and later increased, but ended the month exceptionally low for the time of year. In the more responsive Jurassic limestones, levels were below normal, but rose at New Red Lion but fell at Ampney Crucis. Levels fell slightly in the Magnesian limestones, and remained in the normal range at Aycliffe but below normal at Brick House Farm. Groundwater levels in the Upper Greensand at Lime Kiln Way rose slowly and remained in the normal range. In the Permo-Triassic sandstones, levels generally fell overall but increases were recorded at Skirwith and Llanfair DC and levels were generally in the normal range. Levels fell overall to below normal or notably low in the Carboniferous Limestone, although some recovery occurred in south Wales towards the end of the month. At Royalty Observatory, levels stabilised in the Fell Sandstone and remained in the normal range.

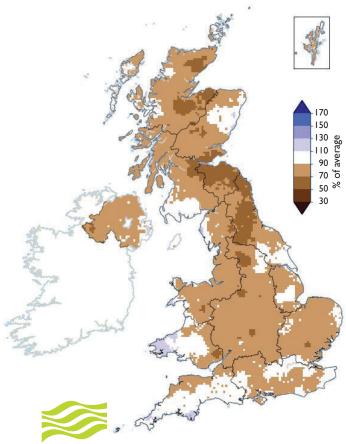
British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall . . . Rainfall . . .

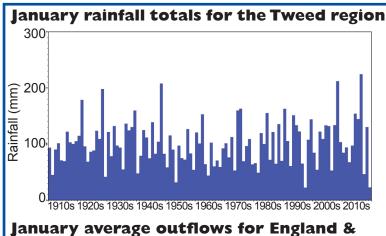
Rainfall accumulations and return period estimates

Percentages are from the 1981-2010 average.

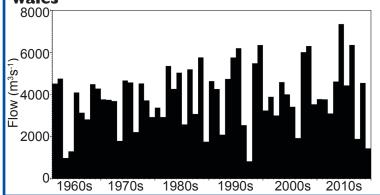

Region	Rainfall	Jan 2019	Oct18 – Jan19		Augl 8 – Jan I 9		Jun I 8	- Jan I 9	Feb18 – Jan19	
		2019		RP		RP		RP		RP
United Kingdom	mm %	64 53	410 85	2-5	600 90	2-5	690 85	5-10	994 88	5-10
England	mm %	37 46	294 85	2-5	422 87	2-5	473 78	10-15	747 88	5-10
Scotland	mm %	102 59	558 84	2-5	839 92	2-5	992 91	2-5	1314 87	2-5
Wales	mm %	89 58	596 93	2-5	842 98	2-5	924 90	2-5	1340 94	2-5
Northern Ireland	mm %	52 45	377 81	5-10	536 82	5-10	666 82	10-15	965 85	8-12
England & Wales	mm %	45 49	336 87	2-5	480 90	2-5	535 80	8-12	829 90	2-5
North West	mm %	68 55	429 81	2-5	665 91	2-5	762 85	5-10	1037 84	5-10
Northumbria	mm %	22 27	247 72	10-15	406 83	5-10	491 79	10-20	758 87	5-10
Severn-Trent	mm %	33 46	242 79	5-10	364 84	5-10	407 73	15-25	690 88	5-10
Yorkshire	mm %	3 I 39	268 81	5-10	387 82	5-10	457 76	10-20	735 87	5-10
Anglian	mm %	24 45	194 84	2-5	281 83	2-5	315 70	15-25	540 86	5-10
Thames	mm %	3 I 45	250 86	2-5	347 86	2-5	372 73	10-20	630 88	2-5
Southern	mm %	33 40	319 89	2-5	436 92	2-5	472 81	5-10	758 95	2-5
Wessex	mm %	42 47	351 91	2-5	467 90	2-5	501 79	5-10	801 90	2-5
South West	mm %	73 54	545 97	2-5	706 97	2-5	761 86	2-5	1143 93	2-5
Welsh	mm %	85 58	571 93	2-5	807 98	2-5	887 90	2-5	1293 94	2-5
Highland	mm %	165 76	669 82	2-5	1031 94	2-5	1190 92	2-5	1514 84	2-5
North East	mm %	63 64	369 88	2-5	516 88	2-5	62 I 85	5-10	863 85	5-10
Тау	mm %	45 27	475 81	2-5	692 87	2-5	836 87	2-5	1146 85	5-10
Forth	mm %	33 24	361 71	8-12	554 78	5-10	689 79	5-10	975 81	5-10
Tweed	mm %	23 21	306 72	8-12	498 84	2-5	624 84	2-5	927 90	2-5
Solway	mm %	68 43	594 91	2-5	869 97	2-5	1020 94	2-5	1377 92	2-5
Clyde	mm %	104	676 84	2-5	1010 91	2-5	1220 92	2-5	1611 88	2-5
% = percentage of 1981-2010 average RP = Return period										


Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and reflect climatic variability since 1910; they also assume a stable climate. The quoted RPs relate to the specific timespans only; for the same timespans, but beginning in any month the RPs would be substantially shorter. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. Note that precipitation totals in winter months may be underestimated due to snowfall undercatch. All monthly rainfall totals since January 2018 are provisional.

Rainfall . . . Rainfall . . .


January 2019 rainfall as % of 1981-2010 average

October 2018 - January 2019 rainfall as % of 1981-2010 average

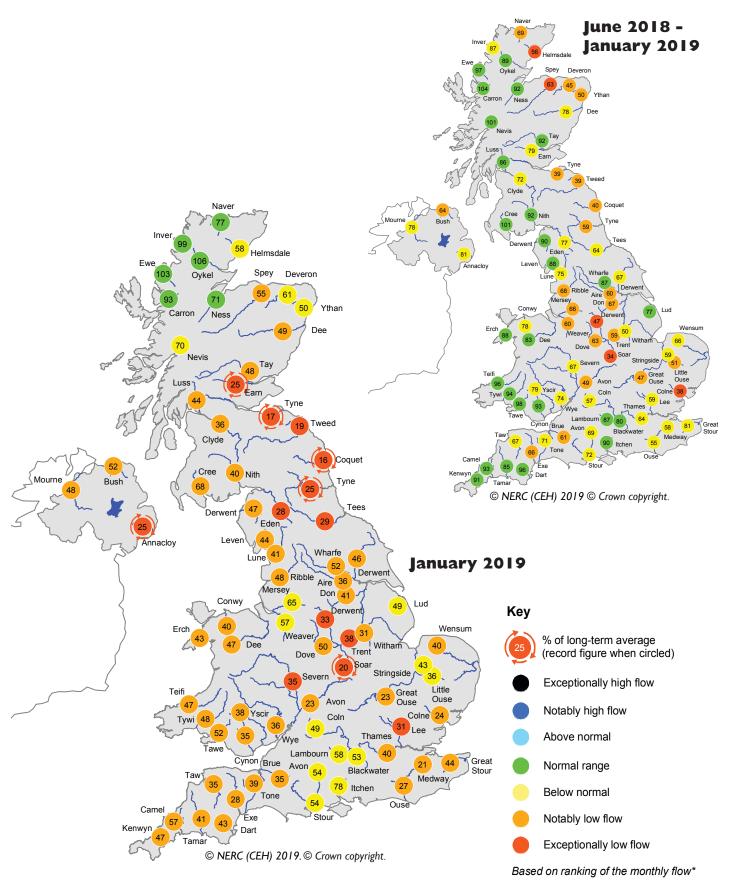


Met Office

Wales

Met Office

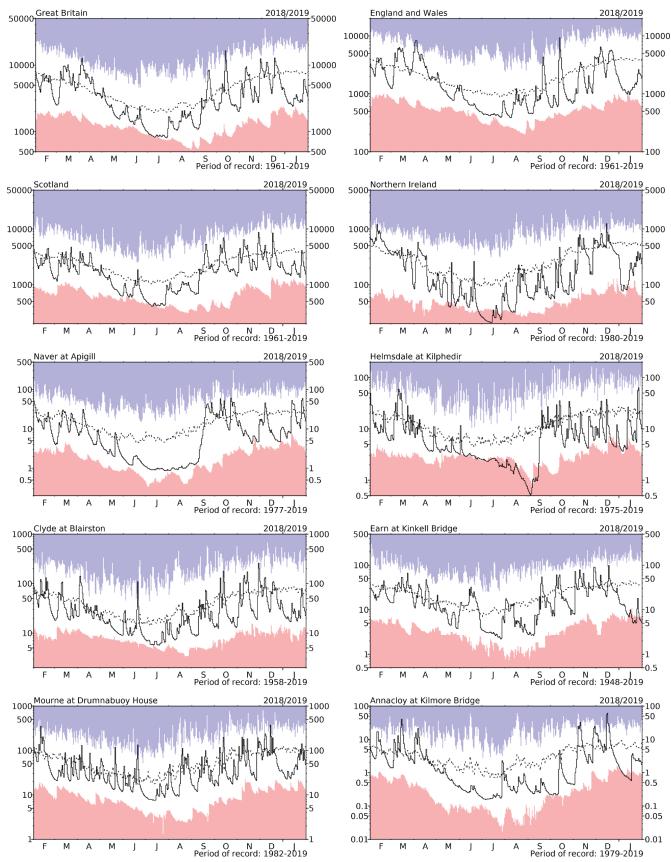
Hydrological Outlook UK


The Hydrological Outlook provides an insight into future hydrological conditions across the UK. Specifically it describes likely trajectories for river flows and groundwater levels on a monthly basis, with particular focus on the next three months.

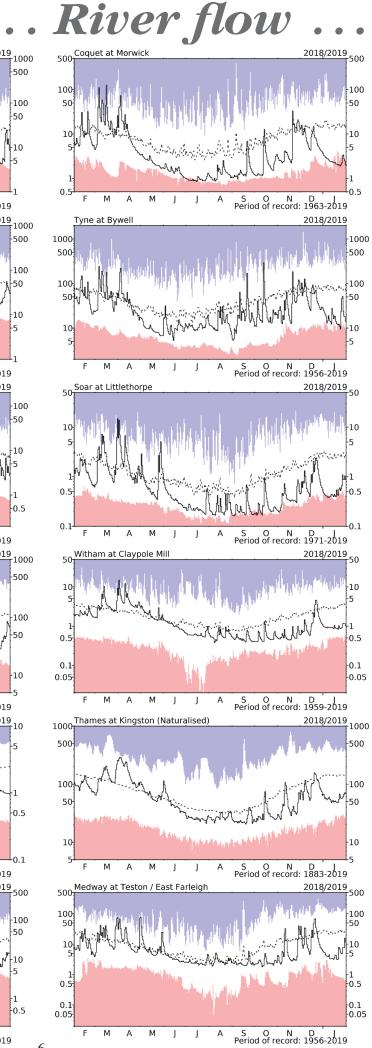
The complete version of the Hydrological Outlook UK can be found at: www.hydoutuk.net/latest-outlook/

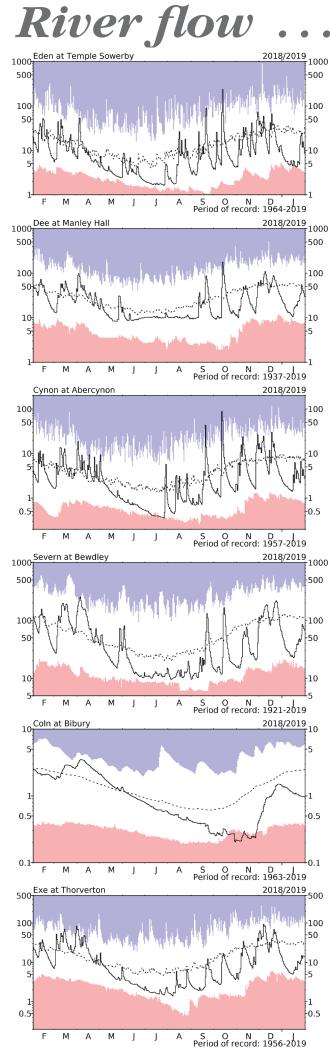
Period: from February 2019 Issued: 11.02.2019 using data to the end of January 2019

The hydrological outlook for parts of central, southern and eastern England is for below normal river flows and groundwater levels over the next one to three months. River flows elsewhere across the UK are subject to some uncertainty due to the atypical meteorological patterns that are currently dominating the UK's precipitation, but are most likely to be within the normal range for February. Groundwater levels across the majority of the UK are likely to be normal to below normal for February-March-April.


River flow ... River flow ...

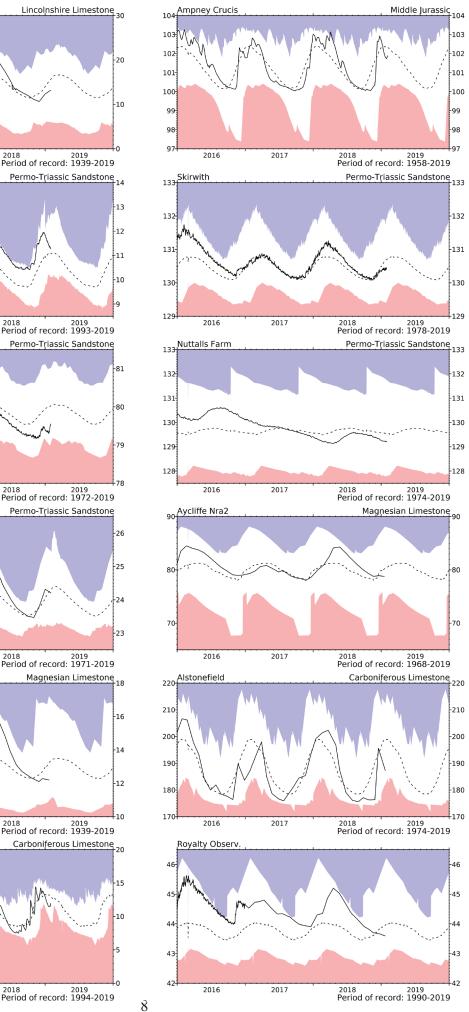
River flows

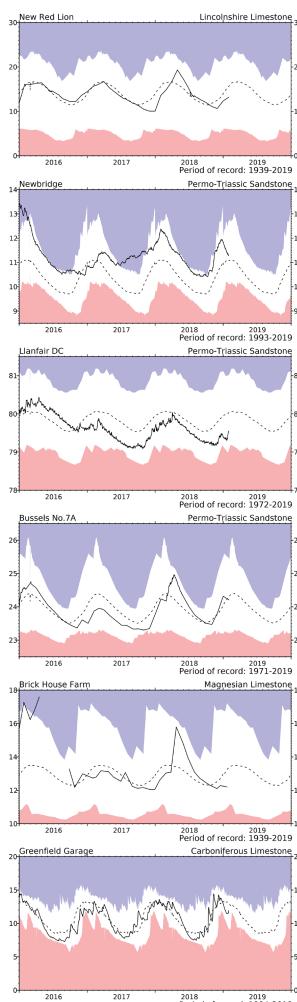

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the averaging period on which these percentages are based is 1981-2010. Percentages may be omitted where flows are under review.

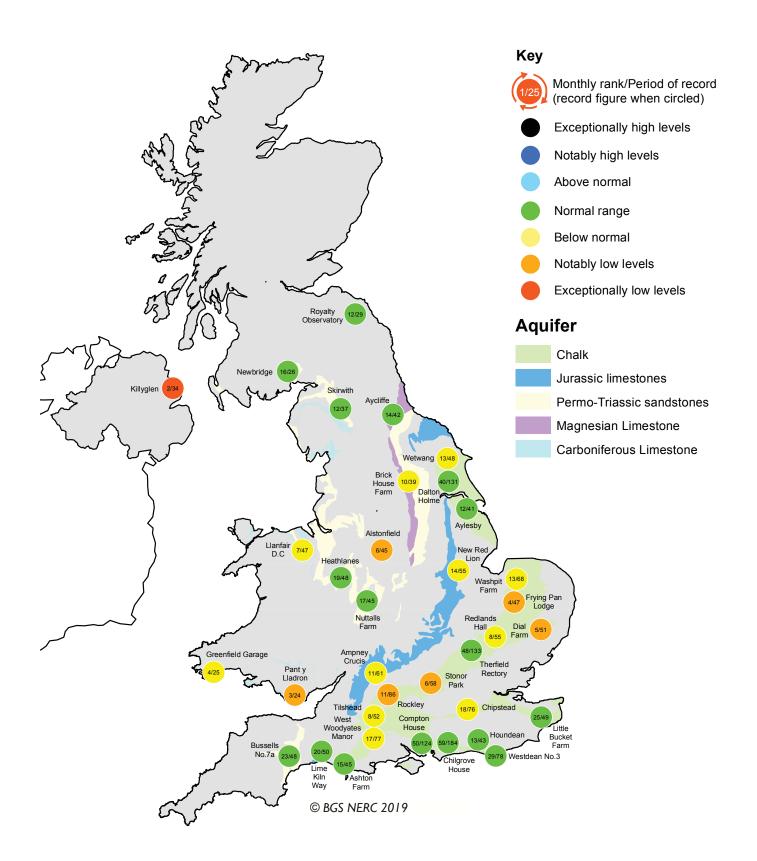

River flow ... River flow ...

River flow hydrographs

*The river flow hydrographs show the daily mean flows (measured in m³s⁻¹) together with the maximum and minimum daily flows prior to February 2018 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. The dashed line represents the period-of-record average daily flow.

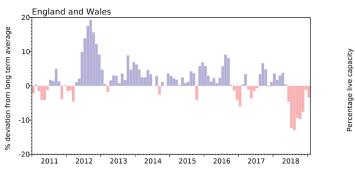


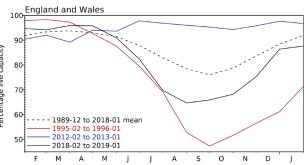

Groundwater...Groundwater


Groundwater levels (measured in metres above ordnance datum) normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously and, for some index wells, the greater frequency of contemporary measurements may, in itself, contribute to an increased range of variation.

Groundwater... Groundwater

Groundwater...Groundwater

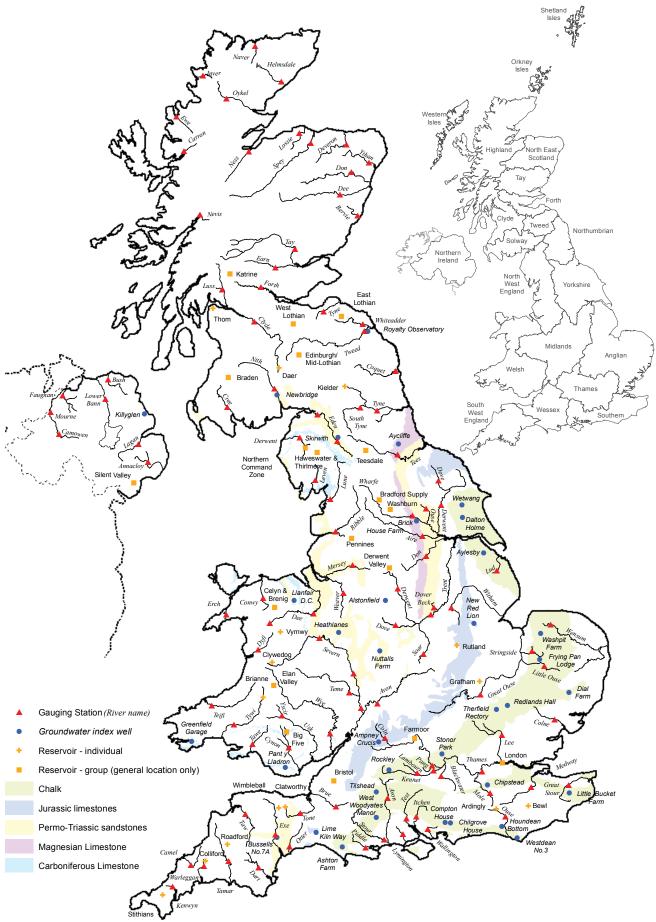

Groundwater levels - January 2019


The calculation of ranking has been modified from that used in summaries published prior to October 2012. It is now based on a comparison between the most recent level and levels for the same date during previous years of record. Where appropriate, levels for earlier years may have been interpolated. The rankings are designed as a qualitative indicator, and ranks at extreme levels, and when levels are changing rapidly, need to be interpreted with caution.

Reservoirs ... Reservoirs ...

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years


Percentage live capacity of selected reservoirs at end of month

Area	Reservoir		Capacity (MI)	2018 Nov	2018 Dec	2019 Jan	Jan Anom.	Min Jan	Year* of min	2018 Jan	Diff 19-18
North West	N Command Zone	•	124929	84	90	84		63	1996	87	-3
	Vyrnwy		55146	81	88	89	-4	45	1996	99	-10
Northumbrian	Teesdale	•	87936	86	99	98	5	51	1996	100	-2
	Kielder		(199175)	82	84	82	-12	82	2019	95	-13
Severn-Trent	Clywedog		49936	87	87	94	5	62	1996	93	1
	Derwent Valley	•	46692	40	74	78	-17	15	1996	100	-22
Yorkshire	Washburn	•	23373	60	96	87	-3	34	1996	94	-7
	Bradford Supply	•	40942	54	76	74	-20	33	1996	100	-26
Anglian	Grafham		(55490)	60	66	72	-14	67	1998	92	-20
	Rutland		(116580)	77	82	82	-4	68	1997	92	-10
Thames	London	•	202828	61	87	94	2	70	1997	94	0
	Farmoor	•	13822	94	88	97	6	72	2001	95	2
Southern	Bewl		31000	72	89	95	14	37	2006	64	31
	Ardingly		4685	42	70	75	-17	41	2012	100	-25
Wessex	Clatworthy		5364	52	100	95	0	62	1989	100	-5
	Bristol	•	(38666)	61	82	80	-7	58	1992	99	-19
South West	Colliford		28540	62	74	78	-6	52	1997	100	-22
	Roadford		34500	54	67	68	-14	30	1996	95	-27
	Wimbleball		21320	50	77	83	-7	58	2017	86	-3
	Stithians		4967	55	90	100	- 11	38	1992	100	0
Welsh	Celyn & Brenig	•	131155	78	87	89	-7	61	1996	98	-10
	Brianne		62140	100	100	99	I 1	84	1997	100	-
	Big Five	•	69762	84	90	94	I 1	67	1997	93	I
	Elan Valley	•	99106	94	100	99	2	73	1996	100	-1
Scotland(E)	Edinburgh/Mid-Lothian	•	96518	92	92	90	-4	72	1999	97	-7
	East Lothian	٠	9374	76	95	98	0	68	1990	100	-2
Scotland(W)	Loch Katrine	•	110326	99	96	95	2	85	2000	100	-5
	Daer		22494	99	98	96	-3	90	2013	100	-5
	Loch Thom		10798	99	100	99	2	90	2004	100	-1
Northern	Total⁺	•	56800	86	95	93	2	74	2017	99	-6
Ireland	Silent Valley	•	20634	85	99	95	6	46	2002	100	-5
() figures in parenthese	es relate to gross storage	•	denotes reservoir group	s					*last occurre	nce	

⁺ excludes Lough Neagh

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2012 period except for West of Scotland and Northern Ireland where data commence in the mid-1990s. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes. Monthly figures may be artificially low due to routine maintenance or turbidity effects in feeder rivers. © NERC (CEH) 2019.

Location map...Location map

© NERC (CEH, BGS) 2019. © Crown copyright.

NHMP

The National Hydrological Monitoring Programme (NHMP) was started in 1988 and is undertaken jointly by the Centre for Ecology & Hydrology (CEH) and the British Geological Survey (BGS). The NHMP aims to provide an authoritative voice on hydrological conditions throughout the UK, to place them in a historical context and, over time, identify and interpret any emerging hydrological trends. Hydrological analysis and interpretation within the Programme is based on the data holdings of the National River Flow Archive (NRFA; maintained by CEH) and National Groundwater Level Archive (NGLA; maintained by BGS), including rainfall, river flows, borehole levels, and reservoir stocks.

The Hydrological Summary is supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.

Data Sources

The NHMP depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged. River flow and groundwater level data are provided by the Environment Agency (EA), Natural Resources Wales -Cyfoeth Naturiol Cymru (NRW), the Scottish Environment Protection Agency (SEPA) and, for Northern Ireland, the Department for Infrastructure - Rivers and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (high flow and low flow data in particular may be subject to significant revision).

Details of reservoir stocks are provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

The Hydrological Summary and other NHMP outputs may also refer to and/or map soil moisture data for the UK. These data are provided by the Meteorological Office Rainfall and Evaporation Calculation System (MORECS). MORECS provides estimates of monthly soil moisture deficit in the form of averages over 40 x 40 km grid squares over Great Britain and Northern Ireland. The monthly time series of data extends back to 1961.

Rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA, NRW and SEPA. The areal rainfall figures have been produced by the Met Office National Climate Information Centre (NCIC), and are based on 5km resolution gridded data from rain gauges. The majority of the full rain gauge network across the UK is operated by the EA, NRW, SEPA and Northern Ireland Water; supplementary rain gauges are operated by the Met Office. The Met Office NCIC monthly rainfall series extend back to 1910 and form the official source of UK areal rainfall statistics which have been adopted by the NHMP. The gridding technique used is described in Perry MC and Hollis DM (2005) available at

http://www.metoffice.gov.uk/climate/uk/about/methods

Long-term averages are based on the period 1981-2010 and are derived from the monthly areal series.

The regional figures for the current month in the hydrological summaries are based on a limited rain gauge network so these (and the associated return periods) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office NCIC and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

For further details on rainfall or MORECS data, please contact the Met Office:

Tel:	0870 900 0100
Email:	enquiries@metoffice.gov.uk

Enquiries

Enquiries should be directed to the NHMP:

Tel:	01491 692599
Email:	nhmp@ceh.ac.uk

A full catalogue of past Hydrological Summaries can be accessed and downloaded at:

http://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.

- i. Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
- ii. Land and Property Services data. © Crown copyright and database right, S&LA 145.
- iii. Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © NERC (CEH) 2019 unless otherwise stated and may not be reproduced without permission.

