Hydrological Summary for the United Kingdom

General

The year began with a wintry complexion: it was the coldest January since 2010 (the UK average temperature was 2.2°C, 1.5°C below the long-term average) and most areas saw frequent wintry showers, with some notable snow accumulations. January was a wet month at the national scale (with 114% of the January average) but in a reversal of the usual rainfall gradient, parts of Scotland were relatively dry and much of eastern and central England was exceptionally wet. In northern England and Wales, a significant proportion of the monthly rainfall was associated with the passage of storm 'Christoph' mid-month, which brought exceptionally high flows across a large swathe of the country, and locally severe flood impacts – a second consecutive month of significant winter flooding. Correspondingly, groundwater levels were exceptionally high across much of northern Britain and near- to above average across the south, with some localised groundwater flood alerts. Reservoir levels increased in the majority of impoundments and stocks were above average at the national scale. The water resources outlook at the outset of 2021 is very healthy, but with widespread high river flows entering February, the potential for further flooding remains elevated for the remainder of the winter. Current outlooks suggesting above normal river flows are likely to persist into spring in eastern and southern England.

Rainfall

Northerly and easterly airflows in early January brought a continuation of the cold spell established in late December. This persisted for the first ten days, with frequent wintry showers, icy conditions and snow in upland areas bringing travel disruption to parts of Scotland and northern England. Milder and wetter conditions then became established in the south but colder weather prevailed elsewhere, with further snow (e.g. with 20cm recorded at Copley, County Durham, on the 15th). Between the 19th and 21st, storm 'Christoph' traversed north-eastwards across the UK, bringing high winds and widespread heavy rainfall, with exceptional totals across north Wales and northern England (e.g. 111mm was recorded on the 19th at Capel Curig, north Wales, and 133mm on the 20th at Honister Pass, Cumbria). Totals of over 100mm for the three-day period were widespread (with 150mm-250mm in some upland locations) and parts of north-west England received more than the typical January rainfall during this event. Widespread colder conditions then returned from the 22nd to the 25th and persisted until month-end in many northern areas. January rainfall totals saw a pronounced contrast, with over 170% of average across much of eastern and central England (the Yorkshire region received 181% of average, the fourth wettest January in a record from 1910) and below average rainfall in western and central Scotland (with less than 50% in parts of the Highlands). Accumulations for the winter so far (December-January) followed a similar spatial pattern, with exceptional totals across large parts of England and Wales (151% of average for England), particularly in eastern areas; the Anglian and Northumbria regions received their third highest totals for this period (both in series from 1910).

River Flows

Flows in the majority of rivers were receding at the turn of the year and, largely, recessions continued for the first ten days, given the cold but generally settled conditions. In many responsive rivers, flows began to climb around mid-month, with widespread flood alerts in Wales and central and eastern England. Storm 'Christoph' triggered pronounced increases in flows across north Wales and northern England, leading to over 200 flood warnings (including a number of severe flood warnings in Cheshire and Merseyside) and more than 200 flood alerts on the 21st. New January maximum flows were established in some rivers draining the Pennines (e.g. the Weaver, the Don and Derbyshire Derwent) and North York Moors (e.g. the Yorkshire Derwent and Dove). Flood inundations caused widespread disruption, evacuations (e.g. in for Scotland.

north Wales, Cheshire and Merseyside) and property flooding (approaching 400 properties reported in England). Several major incidents were declared, e.g. in Didsbury in Greater Manchester following flooding from the Mersey, and incident responses were further hampered by the ongoing COVID-19 restrictions. The accumulated rainfall led to heightened flood risk thereafter, with the focus shifting to major rivers. Flooding occurred along the Severn in Shropshire and Worcestershire, with provisional data suggesting the level at Bewdley approached the peak recorded in the February 2020 episode (both within the top ten levels in a record from 1921). Mean river flows for January as a whole were above average across England and Wales, with exceptionally high flows across areas impacted by storm 'Christoph' (with double the typical January flows common, and new records established, e.g. on the Mersey, Weaver, Don and Trent). Unsurprisingly, flows for the winter so far (December-January) were also record-breaking in this area, and exceptional accumulations were seen in many other catchments, with new maxima as far apart as the Warleggan and the Stringside. The combined outflows for these months for England & Wales were the third highest on record after 2015-2016 and 1993-1994 (in a record from 1961).

anuary

Groundwater

With soils saturated across the major outcrops following a wet late-autumn and December, groundwater levels continued to rise in the majority of index boreholes. Levels in the Chalk were generally in the normal range or above, but were notably or exceptionally high in a few boreholes. Near the south coast, levels receded at several sites and at month-end levels were lower than the start of the month at Chilgrove and West Woodyates Manor, dropping from above normal to normal, and at Houndean from exceptionally high to above normal. Elsewhere, Chalk levels rose with new January maxima established at Washpit Farm and Wetwang. In the Jurassic limestones, levels at both Ampney Crucis and New Red Lion rose to new monthly maxima. Levels in the Magnesian limestones also rose and were above normal. In the Carboniferous Limestone, levels remained exceptionally high but fell overall during January at Pant y Lladron. In the Permo-Triassic sandstones, levels rose and were generally exceptionally high, with a January record maximum set at Weir Farm, whilst at Bussels 7a they remained in the normal range. Levels in the Upper Greensand at Lime Kiln Way rose and remained notably high.

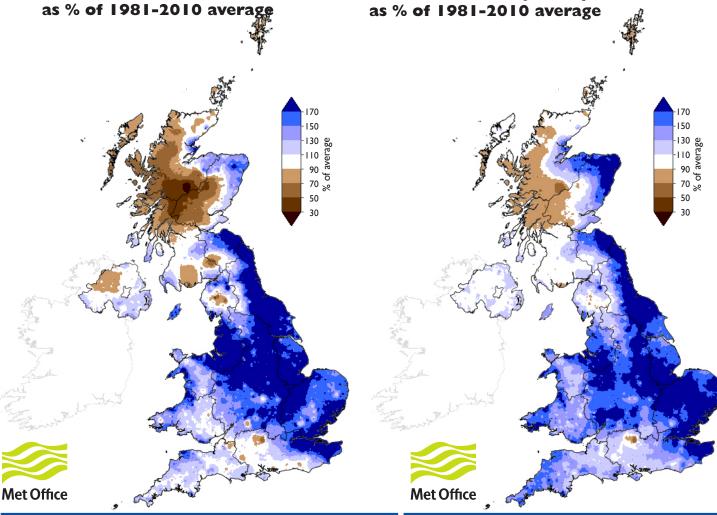
Note: Due to unforeseen circumstances no data are available for Scotland.

Rainfall . . . Rainfall . . .

Rainfall accumulations and return period estimates

Percentages are from the 1981-2010 average.

Region	Rainfall	Jan 2021	Dec20 – Jan21		Aug20 – Jan21		May20	– Jan2 I	Feb20 – Jan21		
		2021		RP		RP		RP		RP	
United Kingdom	mm %	137 114	299 125	8-12	773 117	10-20	1007 115	10-20	1323 117	60-90	
England	mm %	124 152	255 151	20-30	612 127	10-20	775 116	5-10	1007 119	15-25	
Scotland	mm %	141 81	337 100	2-5	967 106	5-10	1301 111	8-12	1728 114	25-40	
Wales	mm %	208 137	465 147	20-30	1057 123	10-20	1323 119	10-15	1746 123	30-50	
Northern Ireland	mm %	119	248 107	2-5	767 117	10-20	1041 118	15-25	1358 119	>100	
England & Wales	mm %	136 148	283 150	20-30	673 126	10-20	850 117	5-10	1108 120	20-30	
North West	mm %	183 147	337 130	8-12	916 125	10-20	1224 126	15-25	1617 132	>100	
Northumbria	mm %	146 176	275 162	50-80	625 128	15-25	810 119	8-12	1022 117	10-20	
Severn-Trent	mm %	120 168	245 164	25-40	55 I 127	10-20	702 114	5-10	925 118	10-20	
Yorkshire	mm %	146 181	267 159	20-30	615 130	10-20	818 124	10-15	1061 126	30-50	
Anglian	mm %	93 176	195 183	70-100	448 132	10-20	566 114	5-10	694 111	5-10	
Thames	mm %	99 144	197 142	5-10	539 133	10-20	655 116	5-10	849 118	5-10	
Southern	mm %	111	240 141	5-10	587 123	5-10	668 106	2-5	900 113	2-5	
Wessex	mm %	99 110	234 124	2-5	606 117	2-5	742 107	2-5	995 112	5-10	
South West	mm %	165 122	405 144	10-20	885 121	5-10	1098 115	5-10	1455 118	10-20	
Welsh	mm %	200 138	449 149	20-35	1024 124	10-20	1282 120	10-15	1684 123	30-50	
Highland	mm %	150 69	375 90	2-5	1040 95	2-5	1412 103	2-5	1931 107	5-10	
North East	mm %	98 100	279 146	25-40	690 118	8-12	954 120	10-15	1151 114	5-10	
Tay	mm %	101 62	294 98	2-5	879 110	5-10	1174 113	5-10	1559 116	20-30	
Forth	mm %	126 92	279 108	2-5	83 I 1 I 7	10-20	1092 117	10-20	1453 121	70-100	
Tweed	mm %	143 135	300 142	20-35	748 127	20-35	987 123	15-25	1290 126	70-100	
Solway	mm %	159 100	338 104	2-5	1037 116	10-15	1420 122	20-35	1834 123	80-120	
Clyde	mm %	179 85	385 94	2-5	1233 111	5-10	1643 117	15-25	2195 121	50-80	


% = percentage of 1981-2010 average

RP = Return period

Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and reflect climatic variability since 1910; they also assume a stable climate. The quoted RPs relate to the specific timespans only; for the same timespans, but beginning in any month the RPs would be substantially shorter. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. Note that precipitation totals in winter months may be underestimated due to snowfall undercatch. All monthly rainfall totals since December 2017 are provisional.

Rainfall . . . Rainfall . . .

January 2021 rainfall

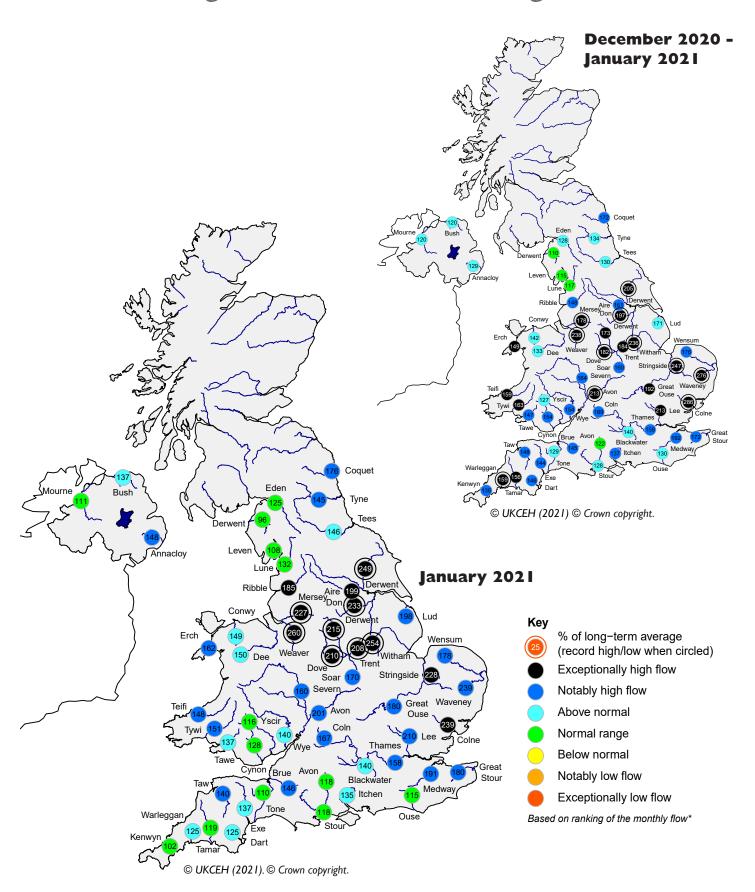
December - January rainfall for Anglian Region 300 Rainfall (mm 200 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s December - January average outflows for **England & Wales** 7000 6000 5000 £4000 <u>8</u> 3000-2000 1000 1960s 1970s 1980s 1990s 2000s 2010s

Hydrological Outlook UK

December 2020 - January 2021 rainfall

The Hydrological Outlook provides an insight into future hydrological conditions across the UK. Specifically it describes likely trajectories for river flows and groundwater levels on a monthly basis, with particular focus on the next three months.

The complete version of the Hydrological Outlook UK can be found at: www.hydoutuk.net/latest-outlook/

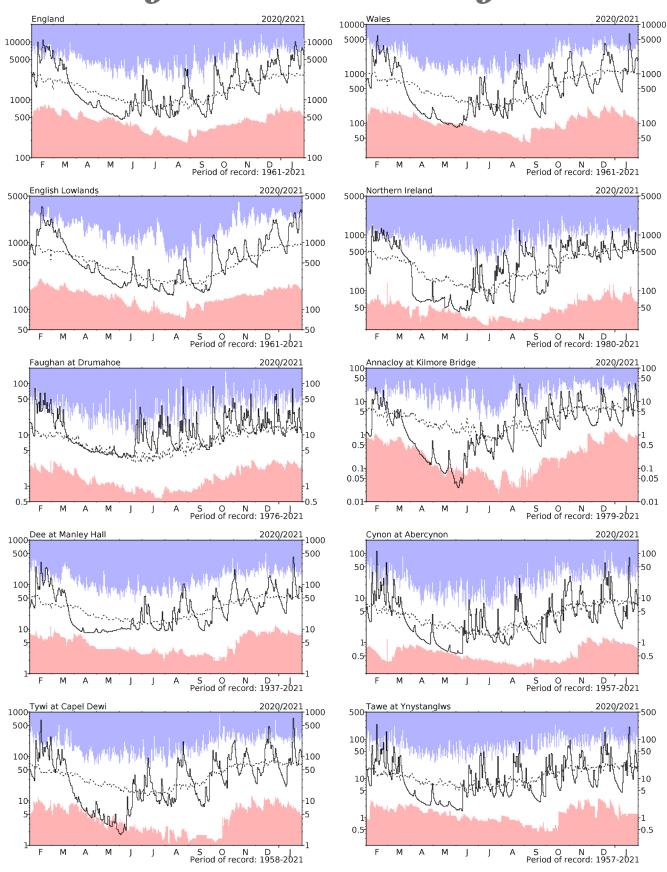

Period: from February 2021

Issued: 09.02.2021

using data to the end of January 2021

Above normal to exceptionally high river flows are expected to persist in eastern and southern parts of the UK over the next three months. Elsewhere, river flows are likely to be within the normal range for February. Groundwater levels in northern aquifers are likely to be exceptionally high over the next three months, whilst levels in southern aquifers are likely to be normal to exceptionally high in February, and normal to notably high over the three month period February-April.

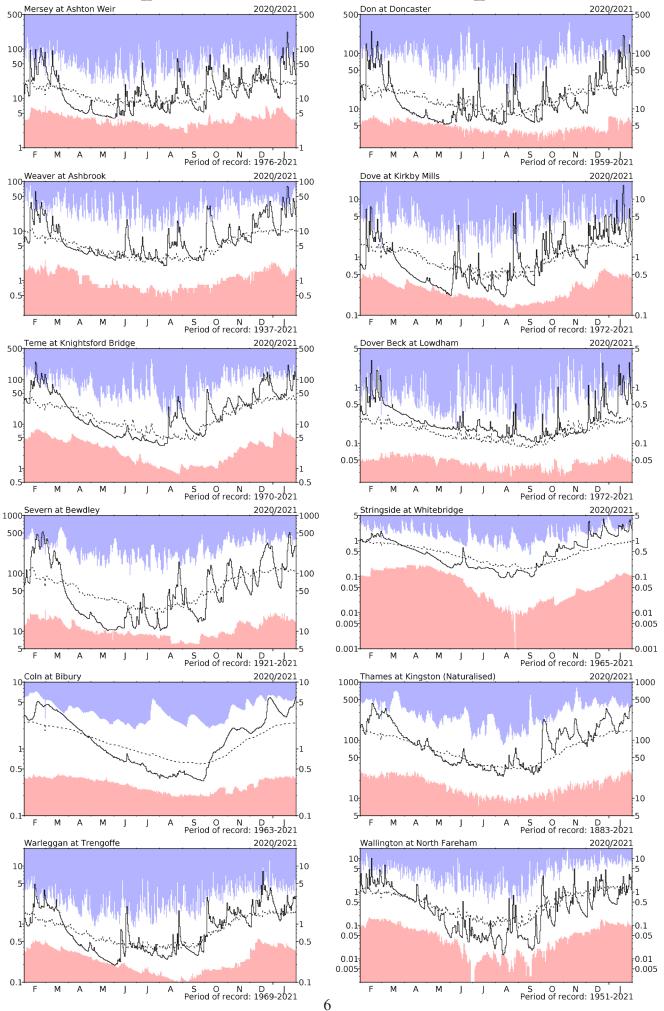
River flow ... River flow ...

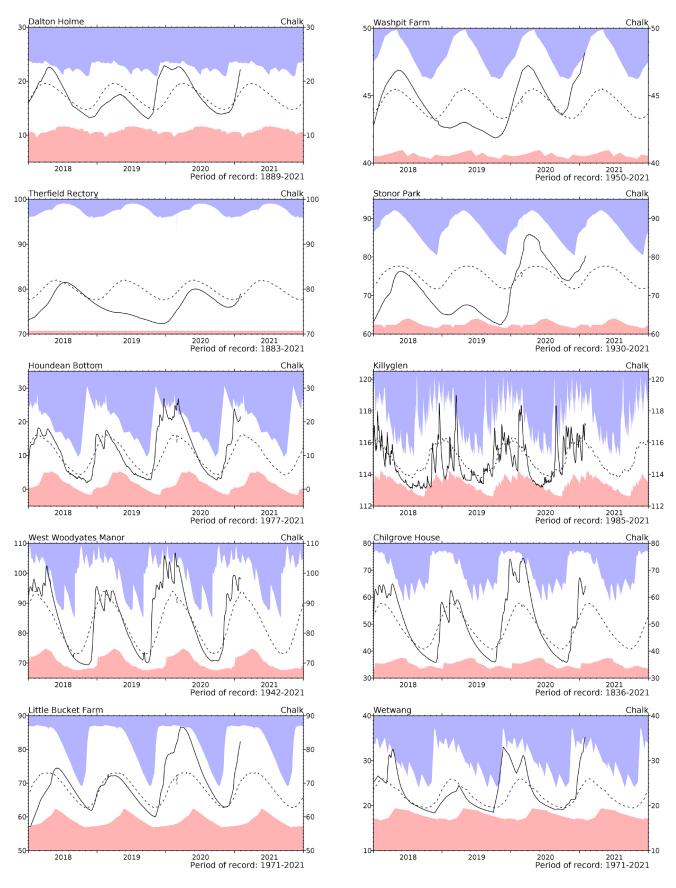


River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the averaging period on which these percentages are based is 1981-2010. Percentages may be omitted where flows are under review.

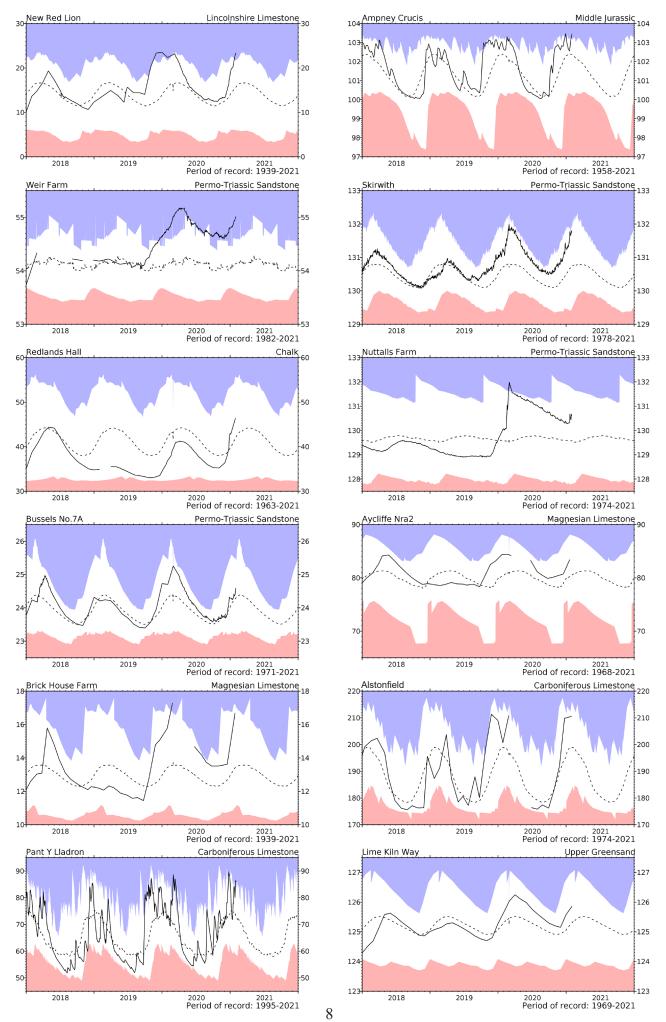
Note: Due to unforeseen circumstances no data are available for Scotland.


River flow ... River flow ...

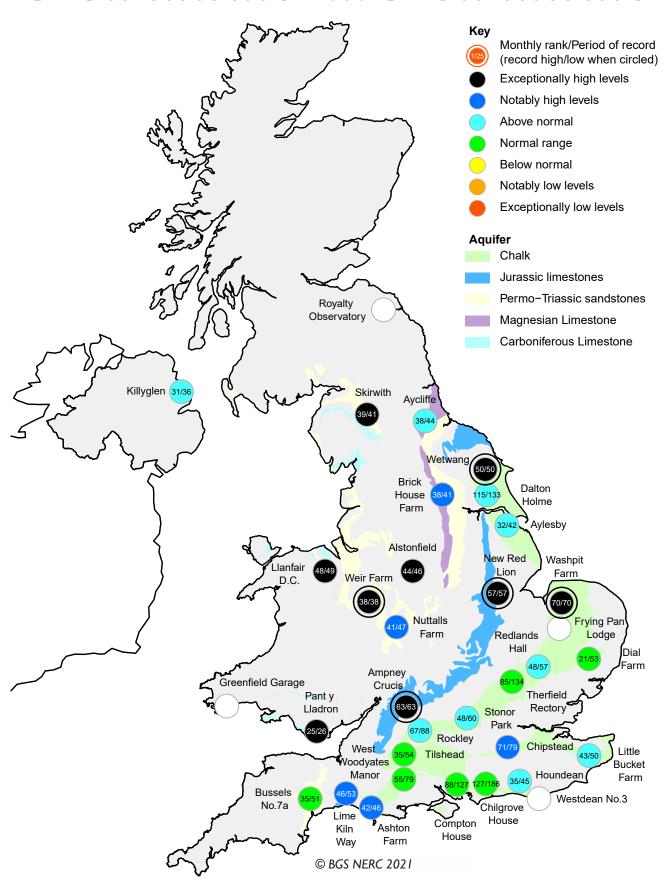

River flow hydrographs

*The river flow hydrographs show the daily mean flows (measured in m³s⁻¹) together with the maximum and minimum daily flows prior to February 2020 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. The dashed line represents the period-of-record average daily flow.

River flow ... River flow ...



Groundwater...Groundwater



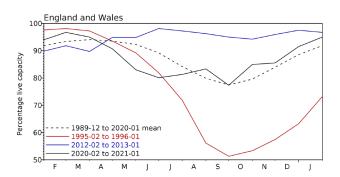
Groundwater levels (measured in metres above ordnance datum) normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously and, for some index wells, the greater frequency of contemporary measurements may, in itself, contribute to an increased range of variation.

Groundwater... Groundwater

Groundwater...Groundwater

Groundwater levels - January 2021

The calculation of ranking has been modified from that used in summaries published prior to October 2012. It is now based on a comparison between the most recent level and levels for the same date during previous years of record. Where appropriate, levels for earlier years may have been interpolated. The rankings are designed as a qualitative indicator, and ranks at extreme levels, and when levels are changing rapidly, need to be interpreted with caution.


Note: Due to unforeseen circumstances no data are available for Scotland.

Reservoirs ... Reservoirs ...

Guide to the variation in overall reservoir stocks for England and Wales

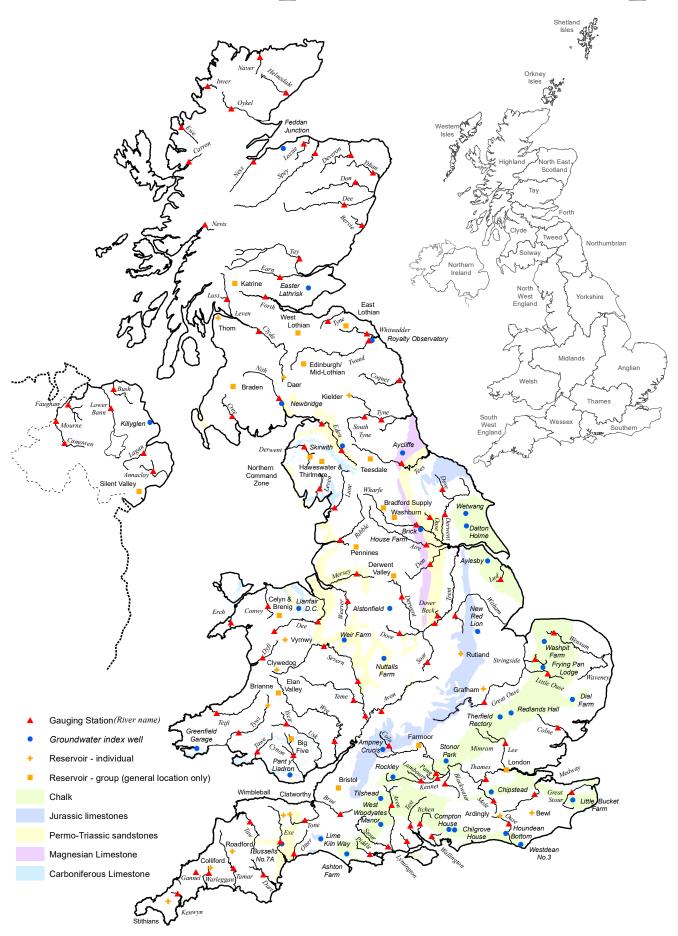
England and Wales To a series of the series

Comparison between overall reservoir stocks for England and Wales in recent years

Percentage live capacity of selected reservoirs at end of month

Area	Reservoir	Capac	ty 2020 II) Nov	2020 Dec	2021	Jan Anom.	Min Jan	Year* of min	2020 Jan	Diff 21-20
North West	N Command Zone	. (1	11) 1404	Dec	Jan	Allolli.	Jan	OI IIIIII	Jan	21-20
1401 (11 4 4 6 3)	Vyrnwy									
Northumbrian	Teesdale	• 879	36 80	94	95	2	51	1996	99	-4
1 401 chambhan	Kielder	(1991)		89	92	-1	82	2019	91	- i
Severn-Trent	Clywedog	499	,	89	94	5	62	1996	93	i
Severii irene	Derwent Valley	• 466		100	99	4	15	1996	100	-i
Yorkshire	Washburn	• 233		98	96	6	34	1996	91	5
10111011110	Bradford Supply	• 409		100	100	6	33	1996	100	0
Anglian	Grafham	(5549		87	83	-2	67	1998	86	-3
,6	Rutland	(11658	,	87	93	6	68	1997	96	-3
Thames	London	• 2028	,	86	94	3	70	1997	91	3
	Farmoor	• 138		78	89	-2	72	2001	97	-9
Southern	Bewl	310		74	88	6	37	2006	93	-5
	Ardingly	46	85 46	87	100	8	41	2012	100	0
Wessex	Clatworthy	56	62 100	100	100	4	62	1989	100	0
	Bristol	• (386	6) 83	100	99	12	58	1992	98	1
South West	Colliford	285	4Ó 66	80	87	3	52	1997	81	6
	Roadford	345	00 73	90	99	17	30	1996	82	17
	Wimbleball	213	20 76	100	100	10	58	2017	100	0
	Stithians	49	67 73	100	100	10	38	1992	100	0
Welsh	Celyn & Brenig	• 1311	55 97	95	100	5	61	1996	93	7
	Brianne	621	40 100	98	100	2	84	1997	99	1
	Big Five	• 697		94	99	6	67	1997	98	I
	Elan Valley	• 991	06 86	100	96	-2	73	1996	98	-2
Scotland(E)	Edinburgh/Mid-Lothian			98	99	5	72	1999	99	0
	East Lothian	• 93		100	100	2	68	1990	100	0
Scotland(W)	Loch Katrine	• 1103		100	99	6	85	2000	100	-
	Daer	224		98	100	2	90	2013	100	0
	Loch Thom	107	21 83	92	93	-5	90	2020	90	3
Northern	Total ⁺	• 568	00 98	100	100	8	74	2017	96	3
Ireland	Silent Valley	• 206	34 98	99	100	- 11	46	2002	94	6

^() figures in parentheses relate to gross storage


Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2012 period except for West of Scotland and Northern Ireland where data commence in the mid-1990s. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes. Monthly figures may be artificially low due to routine maintenance or turbidity effects in feeder rivers.

denotes reservoir groups

^{*}last occurrence

⁺ excludes Lough Neagh

Location map...Location map

NHMP

The National Hydrological Monitoring Programme (NHMP) was started in 1988 and is undertaken jointly by the <u>UK Centre for Ecology & Hydrology</u> (UKCEH) and the <u>British Geological Survey</u> (BGS). The NHMP aims to provide an authoritative voice on hydrological conditions throughout the UK, to place them in a historical context and, over time, identify and interpret any emerging hydrological trends. Hydrological analysis and interpretation within the Programme is based on the data holdings of the <u>National River Flow Archive</u> (NRFA; maintained by UKCEH) and <u>National Groundwater Level Archive</u> (NGLA; maintained by BGS), including rainfall, river flows, borehole levels, and reservoir stocks.

The Hydrological Summary is supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.

Data Sources

The NHMP depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged. River flow and groundwater level data are provided by the Environment Agency (EA), Natural Resources Wales - Cyfoeth Naturiol Cymru (NRW), the Scottish Environment Protection Agency (SEPA) and, for Northern Ireland, the Department for Infrastructure - Rivers and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (high flow and low flow data in particular may be subject to significant revision).

Details of reservoir stocks are provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

The Hydrological Summary and other NHMP outputs may also refer to and/or map soil moisture data for the UK. These data are provided by the Meteorological Office Rainfall and Evaporation Calculation System (MORECS). MORECS provides estimates of monthly soil moisture deficit in the form of averages over 40 x 40 km grid squares over Great Britain and Northern Ireland. The monthly time series of data extends back to 1961.

Rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA, NRW and SEPA. The areal rainfall figures have been produced by the Met Office National Climate Information Centre (NCIC), and are based on 5km resolution gridded data from rain gauges. The majority of the full rain gauge network across the UK is operated by the EA, NRW, SEPA and Northern Ireland

Water; supplementary rain gauges are operated by the Met Office. The Met Office NCIC monthly rainfall series extend back to 1910 and form the official source of UK areal rainfall statistics which have been adopted by the NHMP. The gridding technique used is described in Perry MC and Hollis DM (2005) available at https://doi.org/10.1002/joc.1161

Long-term averages are based on the period 1981-2010 and are derived from the monthly areal series.

The regional figures for the current month in the hydrological summaries are based on a limited rain gauge network so these (and the associated return periods) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office NCIC and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

For further details on rainfall or MORECS data, please contact the Met Office:

Tel: 0870 900 0100

Email: <u>enquiries@metoffice.gov.uk</u>

Enquiries

Enquiries should be directed to the NHMP:

Tel: 01491 692599 Email: nhmp@ceh.ac.uk

A full catalogue of past Hydrological Summaries can be accessed and downloaded at:

http://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.

- i. Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
- ii. Land and Property Services data. © Crown copyright and database right, S&LA 145.
- iii. Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © UKCEH (2021) unless otherwise stated and may not be reproduced without permission.

