Hydrological Summary for the United Kingdom

General

April was typical of the season with fine weather often interrupted by unsettled conditions, notably so mid-month. Rainfall for the UK was near average although this varied regionally with Scotland drier than average, and southern and eastern England notably wetter than average. River flows mirrored these rainfall gradients and for April as a whole, were notably low in northern Scotland, and above normal in southern and eastern areas, exceptionally so in some cases. As evaporation rates increase with the warmer weather, soil moisture levels began to fall, but remained above average for the time of year. Groundwater levels rose at about two thirds of sites, and relatively late recharge occurred at the majority of Chalk boreholes. Levels remained below normal in the Devonian sandstones and the Chalk of East Anglia. Reservoir stocks for England \& Wales remained near-average for April, with most stocks slightly above average. Although stocks at Colliford and Roadford remained considerably below average, their recovery continued. Current outlooks suggest an increased likelihood of wetter than average conditions over coming months meaning that for most, the water resources situation is looking healthy. Caution is required however in areas where long-term deficits persist e.g. East Anglia and in localised areas of northern Scotland where concerns are heightened due to recent dry weather.

Rainfall

High- and low-pressure systems alternated throughout the month and the frontal systems that did affect the UK were most influential in southern and western areas. From the $11^{\text {th }}$ a notable depression brought strong winds and high rainfall totals (e.g. 55 mm on $11^{\text {th }}$ at Seathwaite, Cumbria). On the $12^{\text {th }}$, Météo-France named 'Storm Noa', the second named storm of the 2022/2023 season, bringing unusually severe winds for April causing travel disruption in northern England, south-west England and south Wales. Following this unsettled period mid-month, high pressure returned although with some showers and thunderstorms in central and eastern areas. From the $21^{\text {st }}$, conditions became more unsettled again with longer spells of rain, e.g. 30 mm on $24^{\text {th }}$ at East Malling (Kent). For the UK as a whole, April rainfall was near-average (97\%) although this masked regional differences. Rainfall was in excess of 170% of average in parts of Northern Ireland, Kent and the Norfolk coast, and was above average south of a line between the Severn and Humber estuaries. Conversely, across most of Wales and Scotland rainfall was below average with some areas in Scotland recording less than 70\% of average. It was the second wettest March-April in the Southern, Thames and Wessex regions and the fifth wettest March-April for England (in a series from 1836). Over the last 12 months (May 2022-April 2023) rainfall was near average although deficits remained in East Anglia and northern Scotland whilst surpluses persisted in south-east England and the Western Isles.

River Flows

Following very high flows in March, high pressure during the first ten days of April meant recessions were established and away from southern England, river flows returned to near- or below average. Subsequent widespread rainfall between the $11^{\text {th }}$ and $14^{\text {th }}$, meant flows across the UK peaked with almost all areas seeing flows rise substantially above average, exceptionally so in southern England. Hereafter, recessions commenced, and flows ended the month below average in northern Scotland and near-average in southern Scotland, Northern Ireland, Wales and northern and central England. In southern England however flows remained above average until month-end. Outflows for the UK responded to rainfall mid-month but following the unsettled interlude, receded and ended the month just below average. April average flows were in the normal range in southern and eastern Scotland and northern and
central England. In northern Scotland, flows were below normal, notably so in some cases, with some catchments recording around half of the April average flow e.g. the Oykel and Carron - the latter recording the third lowest April flows in a series since 1978. In southern England and south Wales, flows were above normal, exceptionally so in Kent and the Thames Valley, and the Medway and Sussex Ouse recorded their highest April flows in records from 1958 and 1960, respectively. Some notably high flows were also recorded in south Wales and south-west England where flows approached or exceeded twice the average e.g. on the Teifi, Taw, Exe and Hampshire Stour the latter recording the third highest April flows in a series from 1973. Flows for spring so far (March-April) were similar to those seen in April, with below normal flows in northern Scotland, and above normal flows elsewhere with some exceptionally high flows recorded in south Wales and southern England - the Exe registered its highest March-April flows in a record since 1957.

Soil Moisture and Groundwater

Soil moisture levels remained high for the time of year, with the lowest levels observed mainly on eastern coasts, the Central Belt of Scotland and East Anglia. Groundwater levels rose at almost all Chalk sites but remained below normal in East Anglia and at Dalton Holme. Late recharge at Wetwang interrupted the recession and brought levels back into the normal range. Above normal levels (with several exceptionally high) were observed in the Chalk of the Berkshire and Marlborough Downs, the Wessex Chalk, the South Downs and at Little Bucket Farm, marking a substantial change since the predominantly normal levels in these areas in March. In the Jurassic limestones, the level rose and was above normal at New Red Lion, while at Ampney Crucis levels fell and became notably high. Levels remained in the normal range in the Magnesian Limestone. In the Carboniferous Limestone groundwater levels fell and all sites moved into the above normal range. Levels mostly fell in the Permo-Triassic sandstones but became notably high at Annan; levels at other sites were in the normal or above normal range. In the Upper Greensand at Lime Kiln Way levels rose but remained in the normal range. The groundwater level remained stable and in the normal range at Royalty Observatory in the Fell Sandstone. Levels fell in the Devonian sandstones at Feddan Junction and Easter Lathrisk and were below normal.

Rainfall accumulations and return period estimates
Percentages are from the 199|-2020 average.

Region	Rainfall	$\begin{array}{r} \text { Apr } \\ 2023 \end{array}$	Mar23-Apr23		Feb23-Apr23		Nov22-Apr23		May 22 - Apr23	
				$R P$		$R P$		$R P$		RP
United	mm	70	202		245		654		1146	
Kingdom	\%	97	129	$10-15$	97	2-5	105	$5-10$	99	2-5
England	mm	64	183		198		523		867	
	\%	114	160	20-30	110	2-5	117	5-10	101	2-5
Scotland	mm	74	204		301		825		1537	
	\%	79	94	2-5	84	2-5	94	2-5	98	2-5
Wales	mm	78	284		310		886		1425	
	\%	88	148	10-15	100	2-5	110	$5-10$	98	2-5
Northern	mm	90	241		272		572		1152	
Ireland	\%	121	150	60-90	108	2-5	94	2-5	100	2-5
England \&	mm	66	197		214		573		943	
Wales	\%	109	158	15-25	108	2-5	116	$5-10$	100	2-5
North West	mm	63	213		249		704		1273	
	\%	88	131	$5-10$	93	2-5	105	2-5	100	2-5
Northumbria	mm	49	133		162		443		835	
	\%	80	108	2-5	83	2-5	95	2-5	92	2-5
Severn-Trent	mm	58	174		183		445		766	
	\%	105	159	15-25	110	2-5	112	2-5	96	2-5
Yorkshire	mm	60	157		179		469		821	
	\%	104	134	$5-10$	96	2-5	106	2-5	95	2-5
Anglian	mm	55	143		151		349		592	
	\%	133	177	15-25	122	2-5	118	2-5	95	2-5
Thames	mm	62	188		194		481		765	
	\%	122	192	40-60	129	$5-10$	129	10-15	106	2-5
Southern	mm	82	205		212		652		960	
	\%	156	197	70-100	127	$5-10$	147	40-60	118	5-10
Wessex	mm	78	227		239		650		981	
	\%	129	185	>100	125	$5-10$	133	20-35	109	2-5
South West	mm	90	282		304		861		1288	
	\%	115	168	30-50	111	2-5	122	10-15	103	2-5
Welsh	mm	76	276		301		854		1378	
	\%	89	150	10-20	101	2-5	111	$5-10$	99	2-5
Highland	mm	75	199		352		936		1730	
	\%	67	75	2-5	80	2-5	88	2-5	93	2-5
North East	mm	64	155		204		554		1032	
	\%	92	109	2-5	92	2-5	103	2-5	97	2-5
Tay	mm	86	206		267		787		1441	
	\%	105	109	2-5	86	2-5	102	2-5	104	5-10
Forth	mm	52	179		238		661		1230	
	\%	73	108	2-5	87	2-5	100	2-5	99	2-5
Tweed	mm	41	152		195		563		1042	
	\%	61	105	2-5	83	2-5	99	2-5	96	2-5
Solway	mm	78	261		314		881		1623	
	\%	84	123	$5-10$	90	2-5	102	$5-10$	103	5-10
Clyde	mm	89	252		354		951		1847	
	\%	84	98	2-5	82	2-5	90	2-5	98	2-5

[^0]
Rainfall... Rainfall...

April 2023 rainfall as \% of 1991-2020 average

March 2023 - April 2023 rainfall as \% of l991-2020 average

March - April average river flows on the Medway

UK Hydrological Outlook

The Hydrological Outlook provides an insight into future hydrological conditions across the UK. Specifically it describes likely trajectories for river flows and groundwater levels on a monthly basis, with particular focus on the next three months.

The complete version of the Hydrological Outlook UK can be found at: www.hydoutuk.net/latest-outlook/

Period: from May 2023
Issued: 10.05.2023
using data to the end of April 2023
The outlook for the May-July as a whole is for river flows and groundwater levels to be normal to above normal across the majority of the UK. For May, normal to below normal flows are likely in northern Scotland. River flows and groundwater levels in southern England are likely to be above normal for May.

River flow . . . River flow

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. The categories of the spots are based on the full period-of-record data whereas the percentages are based on the 1991-2020 averaging period for consistency between rainfall and river flows. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

*The river flow hydrographs show the daily mean flows (measured in $\mathrm{m}^{3} \mathrm{~s}^{-1}$) together with the maximum and minimum daily flows prior to May 2022 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas. The dashed line represents the period-of-record average daily flow.

River flow

Groundwater... Groundwater

Groundwater levels (measured in metres above ordnance datum) normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are calculated with data from the start of the record to the end of 2019. Note that most groundwater levels are not measured continuously and, for some index wells, the greater frequency of contemporary measurements may, in itself, contribute to an increased range of variation.

Groundwater... Groundwater

Groundwater... Groundwater

Groundwater levels - April 2023

The calculation of ranking has been modified from that used in summaries published prior to October 2012. It is now based on a comparison between the most recent level and levels for the same date during previous years of record. Where appropriate, levels for earlier years may have been interpolated. The rankings are designed as a qualitative indicator, and ranks at extreme levels, and when levels are changing rapidly, need to be interpreted with caution.

Reservoirs . . . Reservoirs
 Guide to the variation in overall reservoir stocks for England and Wales
 Comparison between overall reservoir stocks for England and Wales in recent years

Percentage live capacity of selected reservoirs at end of month

Area North West	Reservoir	Capacity (MI)	$\begin{array}{r} 2023 \\ \text { Feb } \end{array}$	$\begin{gathered} 2023 \\ \text { Mar } \end{gathered}$	2023	Apr Anom.	Min Apr	Year* of min	2022	$\begin{array}{r} \text { Diff } \\ 23-22 \end{array}$
	N Command Zone	- 124929	88	99	94	7	65	1984	83	11
	Vyrnwy	55146	86	100	100	7	70	1996	87	13
Northumbrian	Teesdale	- 87936	87	100	94	4	73	2020	95	-I
	Kielder	(199175)	90	96	91	I	85	1990	90	1
Severn-Trent	Clywedog	49936	89	98	99	2	85	1988	99	0
	Derwent Valley	46692	89	101	97	5	54	1996	88	9
Yorkshire	Washburn	23373	95	99	98	9	76	1996	87	11
	Bradford Supply	40942	83	92	92	2	60	1996	83	9
Anglian	Grafham	(55490)	80	80	87	-7	73	1997	95	-8
	Rutland	(116580)	96	97	96	3	72	1997	95	I
Thames	London	- 202828	93	98	97	3	86	1990	97	0
	Farmoor	13822	99	89	95	-2	81	2000	99	-4
Southern	Bewl	31000	96	100	99	9	60	2012	88	11
	Ardingly	4685	100	100	100	I	69	2012	94	6
Wessex	Clatworthy	5662	92	100	100	8	81	1990	87	13
	Bristol	- (38666)	96	100	100	7	83	2011	89	11
South West	Colliford	28540	49	60	67	-20	56	1997	75	-8
	Roadford	34500	58	68	69	-17	41	1996	94	-26
	Wimbleball	21320	97	100	100	5	79	1992	93	7
	Stithians	4967	92	99	99	8	65	1992	86	13
Welsh	Celyn \& Brenig	- 131155	79	89	92	-6	75	1996	89	3
	Brianne	62140	89	100	100	4	86	1997	88	12
	Big Five	69762	93	100	99	6	85	2011	87	12
	Elan Valley	99106	93	100	97	I	83	2011	88	9
Scotland(E)	Edinburgh/Mid-Lothian	- 97223	98	98	96	3	62	1998	95	1
	East Lothian	- 9317	100	100	100	,	89	1992	100	0
Scotland(W)	Loch Katrine	110326	98	100	97	6	80	2010	91	6
	Daer	22494	88	90	84	-8	78	2013	81	3
	Loch Thom	10721	99	99	96	3	72	2021	93	3
Northern	Total ${ }^{+}$	- 56800	92	98	97	9	77	2007	85	13
Ireland	Silent Valley	20634	89	100	98	14	58	2000	82	16

[^1]- denotes reservoir groups
*last occurrence

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2012 period except for West of Scotland and Northern Ireland where data commence in the mid-1990s. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes. Monthly figures may be artificially low due to routine maintenance or turbidity effects in feeder rivers.
© UKCEH (2023).

Soil Moisture . . . Soil Moisture

At the end of April, soil moisture levels at most COSMOS-UK sites remain high, following the large amounts of rainfall seen in March, and close to, or above, average rainfall across most areas in April.

Sites located in central and eastern England, such as Chimney Meadows, Elmsett and Rothamsted, continued to have wet soils above their normal range. Sites in northern England, such as Gisburn, and Fivemiletown in Northern Ireland, similarly recorded high soil moisture content. In Wales and the south-west of England, soils were generally drier and near their usual moisture level in mid-April but wetted up again at the end of the month (e.g. in Plynlimon, the Lizard, and Sydling). In Scotland, soil moisture varied between mid-range levels at Crichton in the south-west to very wet at Glensaugh in the north-east.

Soil moisture data

These data are from UKCEH's COSMOS-UK network. The time series graphs show volumetric water content as a percentage in black together with the maximum and minimum daily values for the period-of-record of the sites. The dashed line represents the period-of-record mean VWC. For more information visit cosmos.ceh.ac.uk.

NHMP

The National Hydrological Monitoring Programme (NHMP) was started in 1988 and is undertaken jointly by the UK Centre for Ecology \& Hydrology (UKCEH) and the British Geological Survey (BGS). The NHMP aims to provide an authoritative voice on hydrological conditions throughout the UK, to place them in a historical context and, over time, identify and interpret any emerging hydrological trends. Hydrological analysis and interpretation within the Programme is based on the data holdings of the National River Flow Archive (NRFA; maintained by UKCEH) and National Groundwater Level Archive (NGLA; maintained by BGS), including rainfall, river flows, borehole levels, and reservoir stocks.

The Hydrological Summary is supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.

Data Sources

The NHMP depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged. A location map of all sites used in the Hydrological Summary can be found on the NHMP website. River flow and groundwater level data are provided by the Environment Agency (EA), Natural Resources Wales Cyfoeth Naturiol Cymru (NRW), the Scottish Environment Protection Agency (SEPA) and, for Northern Ireland, the Department for Infrastructure - Rivers and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (high flow and low flow data in particular may be subject to significant revision).

Details of reservoir stocks are provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

The Hydrological Summary and other NHMP outputs may also refer to and/or map soil moisture data for the UK. These data are provided by the Meteorological Office Rainfall and Evaporation Calculation System (MORECS). MORECS provides estimates of monthly soil moisture deficit in the form of averages over $40 \times 40 \mathrm{~km}$ grid squares over Great Britain and Northern Ireland. The monthly time series of data extends back to 1961.

Rainfall data are provided by the Met Office. To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA, NRW and SEPA. The areal rainfall figures have been produced by the Met Office National Climate Information Centre (NCIC), and are based on the HadUK-Grid 1 km resolution gridded data from rain gauges. The majority of the full rain gauge network across
the UK is operated by the EA, NRW, SEPA and Northern Ireland Water; supplementary rain gauges are operated by the Met Office. The Met Office NCIC monthly rainfall series extend back to 1836 and form the official source of UK areal rainfall statistics which have been adopted by the NHMP. The gridding technique used is described in Hollis, 2019 available at https://doi.org/10.1002/gdj3.78

Long-term averages are based on the period 1991-2020 and are derived from the monthly areal series.

The regional figures for the current month in the hydrological summaries are based on a limited rain gauge network so these (and the associated return periods) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office NCIC and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.

For further details on rainfall or MORECS data, please contact the Met Office:

$$
\begin{array}{ll}
\text { Tel: } & 03709000100 \\
\text { Email: } & \text { enquiries@metoffice.gov.uk }
\end{array}
$$

Enquiries

Enquiries should be directed to the NHMP:

$$
\begin{array}{ll}
\text { Tel: } & 01491692599 \\
\text { Email: } & \text { nhmp@ceh.ac.uk }
\end{array}
$$

A full catalogue of past Hydrological Summaries can be accessed and downloaded at:
http://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk
Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.
i. Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
ii. Land and Property Services data. © Crown copyright and database right, S\&LA 145.
iii. Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © UKCEH (2023) unless otherwise stated and may not be reproduced without permission.

Natural

[^0]: Important note: Figures in the above table may be quoted provided their source is acknowledged. Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and reflect climatic variability since 1836; they also assume a stable climate. The quoted RPs relate to the specific timespans only; for the same timespans, but beginning in any month the RPs would be substantially shorter. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. Note that precipitation totals in winter months may be underestimated due to snowfall undercatch. All monthly rainfall totals since January 2023 are provisional. Source: Data from HadUK-Grid dataset at 1 km resolution v1.2.0.0.

[^1]: () figures in parentheses relate to gross storage

 + excludes Lough Neagh

